371 research outputs found

    A text classification framework based on optimized error correcting output code

    Get PDF
    In recent years, there has been increasing interest in using text classifiers for retrieving and filtering infomation from web sources. As the numbers of categories in this kind of software applications can be high, Error correcting Output Coding (ECOC) can be a valid approach to perform multi-class classification. This paper explores the use of ECOC for learning text classifiers using two kinds of dichotomizers and compares them to each corresponding monolithic classifier. We propose a simulated annealing approach to calculate the coding matrix using an energy function similar to the electrostatic potential energy of a system of charges, which allows to maximize the average distance between codewords |with low variance. In addition, we use a new criterion for selecting features, a feature (in this specific context) being any term that may occur in a document. This criterion defines a measure of discriminant capability and allows to order terms according to it. Three different measures have been experimented to perform feature ranking/selection, in a comparative setting. Experimental results show that reducing the set of features used to train classifiers does not affect classification performance. Notably, feature selection is not a preprocessing activity valid for all dichotomizers. In fact, features are selected for each dichotomizer that occurs in the matrix coding, typically giving rise to a different subset of features depending on the dichotomizers at hand

    LISA pathfinder micronewton cold gas thrusters: in-flight characterization

    Get PDF
    The LISA Pathfinder (LPF) mission has demonstrated the ability to limit and measure the fluctuations in acceleration between two free falling test masses down to sub-femto-g levels. One of the key elements to achieve such a level of residual acceleration is the drag free control. In this scheme the spacecraft is used as a shield against any external disturbances by adjusting its relative position to a reference test mass. The actuators used to move the spacecraft are cold gas micropropulsion thrusters. In this paper, we report in-flight characterization of these thrusters in term of noise and artefacts during science operations using all the metrology capabilities of LISA Pathfinder. Using the LISA Pathfinder test masses as an inertial reference frame, an average thruster noise of ~0.17¿¿µN/Hz is observed and decomposed into a common (coherent) and an uncorrelated component. The very low noise and stability of the onboard metrology system associated with the quietness of the space environment allowed the measurement of the thruster noise down to ~20¿¿µHz, more than an order of magnitude below any ground measurement. Spectral lines were observed around ~1.5¿¿mHz and its harmonics and around 55 and 70 mHz. They are associated with the cold gas system itself and possibly to a clock synchronization issue. The thruster noise-floor exhibits an excess of ~70% compared to characterization that have been made on ground on a single unit and without the feeding system. However this small excess has no impact on the LPF mission performance and is compatible with the noise budget for the upcoming LISA gravitational wave observatory. Over the whole mission, nominal, and extension, the thrusters showed remarkable stability for both the science operations and the different maneuvers necessary to maintain LPF on its orbit around L1. It is therefore concluded that a similar cold gas system would be a viable propulsion system for the future LISA mission.Peer ReviewedPostprint (author's final draft

    Temperature stability in the sub-milliHertz band with LISA Pathfinder

    Get PDF
    This article has been accepted for publication in "Monthly notices of the royal astronomical society" published by Oxford University Press.LISA Pathfinder (LPF) was a technology pioneering mission designed to test key technologies required for gravitational wave detection in space. In the low frequency regime (milliHertz and below), where space-based gravitational wave observatories will operate, temperature fluctuations play a crucial role since they can couple into the interferometric measurement and the test masses’ free-fall accuracy in many ways. A dedicated temperature measurement subsystem, with noise levels in 10¿µK¿Hz-1/2 down to 1¿mHz was part of the diagnostics unit onboard LPF. In this paper we report on the temperature measurements throughout mission operations, characterize the thermal environment, estimate transfer functions between different locations, and report temperature stability (and its time evolution) at frequencies as low as 10¿µHz, where typically values around 1¿K¿Hz-1/2 were measured.Peer ReviewedPreprin

    Characteristics and energy dependence of recurrent galactic cosmic-ray flux depressions and of a forbush decrease with LISA Pathfinder

    Get PDF
    The final publication is available at IOS Press through http://dx.doi.org/10.3847/1538-4357/aaa774Galactic cosmic-ray (GCR) energy spectra observed in the inner heliosphere are modulated by the solar activity, the solar polarity and structures of solar and interplanetary origin. A high counting rate particle detector (PD) aboard LISA Pathfinder, meant for subsystems diagnostics, was devoted to the measurement of GCR and solar energetic particle integral fluxes above 70 MeV n-1 up to 6500 counts s-1. PD data were gathered with a sampling time of 15 s. Characteristics and energy dependence of GCR flux recurrent depressions and of a Forbush decrease dated 2016 August 2 are reported here. The capability of interplanetary missions, carrying PDs for instrument performance purposes, in monitoring the passage of interplanetary coronal mass ejections is also discussed.Peer ReviewedPreprin

    Novel methods to measure the gravitational constant in space

    Get PDF
    We present two novel methods, tested by LISA Pathfinder, to measure the gravitational constant G for the first time in space. Experiment 1 uses electrostatic suspension forces to measure a change in acceleration of a test mass due to a displaced source mass. Experiment 2 measures a change in relative acceleration between two test masses due to a slowly varying fuel tank mass. Experiment 1 gave a value of G=6.71±0.42(×10-11)¿¿m3¿s-2¿kg-1 and experiment 2 gave 6.15±0.35(×10-11)¿¿m3¿s-2¿kg-1, both consistent with each other to 1s and with the CODATA 2014 recommended value of 6.67408±0.00031(×10-11)¿¿m3¿s-2¿kg-1 to 2s. We outline several ideas to improve the results for a future experiment, and we suggest that a measurement in space would isolate many terrestrial issues that could be responsible for the inconsistencies between recent measurements.Peer ReviewedPostprint (published version

    Sub-Femto-g free fall for space-based gravitational wave observatories : LISA Pathfinder results

    Get PDF
    We report the first results of the LISA Pathfinder in-flight experiment. The results demonstrate that two free-falling reference test masses, such as those needed for a space-based gravitational wave observatory like LISA, can be put in free fall with a relative acceleration noise with a square root of the power spectral density of 5.2 +/- 0.1 fm s(-2)/root Hz, or (0.54 +/- 0.01) x 10(-15) g/root Hz, with g the standard gravity, for frequencies between 0.7 and 20 mHz. This value is lower than the LISA Pathfinder requirement by more than a factor 5 and within a factor 1.25 of the requirement for the LISA mission, and is compatible with Brownian noise from viscous damping due to the residual gas surrounding the test masses. Above 60 mHz the acceleration noise is dominated by interferometer displacement readout noise at a level of (34.8 +/- 0.3) fm/root Hz, about 2 orders of magnitude better than requirements. At f <= 0.5 mHz we observe a low-frequency tail that stays below 12 fm s(-2)/root Hz down to 0.1 mHz. This performance would allow for a space-based gravitational wave observatory with a sensitivity close to what was originally foreseen for LISA.Peer ReviewedPostprint (published version

    A Soft-Voting Ensemble Classifier for Detecting Patients Affected by COVID-19

    Get PDF
    COVID-19 is an ongoing global pandemic of coronavirus disease 2019, which may cause severe acute respiratory syndrome. This disease highlighted the limitations of health systems worldwide regarding managing the pandemic. In particular, the lack of diagnostic tests that can quickly and reliably detect infected patients has contributed to the spread of the virus. Reverse Transcriptase-Polymerase Chain Reaction (RT-PCR) and antigen tests, which are the main diagnostic tests for COVID-19, showed their limitations during the pandemic. In fact, RT-PCR requires several hours to provide a diagnosis and is not properly accurate, thus generating a high number of false negatives. Unlike RT-PCR, antigen tests provide rapid diagnosis but are less accurate in detecting COVID-19 positive patients. Medical imaging is an alternative diagnostic test for COVID-19. In particular, chest computed tomography allows detecting lung infections related to the disease with high accuracy. However, visual analysis of a chest scan generated by computed tomography is a demanding activity for radiologists, making widespread use of this test unfeasible. Therefore, it is essential to lighten their work with automated tools able to provide accurate diagnosis in a short time. To deal with this challenge, in this work, an approach based on 3D Inception CNNs is proposed. Specifically, 3D Inception-V1 and Inception-V3 models have been built and compared. Then, soft-voting ensemble classifier models have been separately built on these models to boost the performance. As for the individual models, results showed that Inception-V1 outperformed Inception-V3 according to different measures. As for the ensemble classifier models, the outcome of experiments pointed out that the adopted voting strategy boosted the performance of individual models. The best results have been achieved enforcing soft voting on Inception-V1 models

    Precision charge control for isolated free-falling test masses: LISA pathfinder results

    Get PDF
    The LISA Pathfinder charge management device was responsible for neutralizing the cosmic-ray-induced electric charge that inevitably accumulated on the free-falling test masses at the heart of the experiment. We present measurements made on ground and in flight that quantify the performance of this contactless discharge system which was based on photoemission under UV illumination. In addition, a two-part simulation is described that was developed alongside the hardware. Modeling of the absorbed UV light within the Pathfinder sensor was carried out with the Geant4 software toolkit and a separate Matlab charge transfer model calculated the net photocurrent between the test masses and surrounding housing in the presence of AC and DC electric fields. We confront the results of these models with observations and draw conclusions for the design of discharge systems for future experiments like LISA that will also employ free-falling test masses.Peer ReviewedPostprint (author's final draft

    Measuring the galactic cosmic ray flux with the LISA Pathfinder radiation monitor

    Get PDF
    © . This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/Test mass charging caused by cosmic rays will be a significant source of acceleration noise for space-based gravitational wave detectors like LISA. Operating between December 2015 and July 2017, the technology demonstration mission LISA Pathfinder included a bespoke monitor to help characterise the relationship between test mass charging and the local radiation environment. The radiation monitor made in situ measurements of the cosmic ray flux while also providing information about its energy spectrum. We describe the monitor and present measurements which show a gradual 40% increase in count rate coinciding with the declining phase of the solar cycle. Modulations of up to 10% were also observed with periods of 13 and 26 days that are associated with co-rotating interaction regions and heliospheric current sheet crossings. These variations in the flux above the monitor detection threshold (¿˜¿70¿MeV) are shown to be coherent with measurements made by the IREM monitor on-board the Earth orbiting INTEGRAL spacecraft. Finally we use the measured deposited energy spectra, in combination with a GEANT4 model, to estimate the galactic cosmic ray differential energy spectrum over the course of the mission.Peer ReviewedPostprint (author's final draft
    corecore